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Abstract--Thrust  sheet movement over ramps requires energy because of the frictional resistance and deforma- 
tion within the fault zone, fault-bend folding at the base and top of the ramp, and changes in the gravitational 
potential energy because of uplift. To model the energy usage, a kinematic model of a foreland thrust sheet is 
constructed assuming: (1) the ramp is planar and the flats are parallel to bedding; (2) the fault-bend folds are 
concentric; (3) thickness is preserved for beds that enter the folds parallel to the basal thrust fault and (4) 
cross-sectional area is preserved for rocks deformed by folding. Equations for the work done within the fault 
zone, and during uplift and fault-bend folding are derived by combining the kinematic model with stresses that 
increase in proportion to depth. The relative amounts of energy consumed by friction along the fault, uplift and 
fault-bend folding are estimated to be 2.7 : I : 0.25 for a ramp angle of 30 °. The energy balance for the movement 
of large thrust sheets thus depends principally upon friction in the fault zone and changes in the gravitational 
energy. 

INTRODUCTION 

THE FORMATION of duplexes and other structures found 
in foreland fold-and-thrust belts requires energy. Mitra 
& Boyer (1986) estimated the amounts of energy used 
during duplex formation for initiation and propagation 
of fractures in the fault zone, frictional resistance to 
thrusting, shear deformation within the thrust sheet, and 
uplift. They determined that energy is used principally 
for internal shear deformation of the thrust sheet and 
uplift against gravity. Specifically, they calculated values 
of 5 × 1016 J for work done within the basal thrust zone, 
as compared to 2.3 × 1017-6.3 × 1017 J for uplift against 
gravity and 3 × 1017 J for internal deformation due to 
fault-bend folding, for particular structures where the 
thrust sheets are 5 km thick. However, their work 
calculations are incomplete, because although Mitra & 
Boyer used the strain energy equation, they considered 
only those terms which involve the shear stress, and do 
not take into account the variation of stress with depth in 
the crust. 

The purpose of this paper is to present estimates for 
the relative amounts of energy consumed during the 
movement of individual thrust sheets by friction in the 
fault zone, uplift against gravity, and shear deformation 
in fault-bend folds. The estimates are based on stylized 
kinematic models of thrusting and concentric fault-bend 
folds. It is also shown that useful estimates of the amount 
of energy required for fault-bend folding can be made 
from the ramp angle and amount of work done against 
gravity. 

WORK DONE IN A FAULT-BEND FOLD 

A thrust sheet passing through a fault-bend fold 
(Suppe 1983) undergoes internal deformation, which 
irreversibly converts mechanical energy into heat. This 

work is done by surface forces acting on individual 
parcels of rock which experience shear deformation. 
The general form of the work equation is given by 
Frederick & Chang (1972, p. 129): 

W =  f v  ~q, iqj - -  ~qqj.i dV, (1) 

where W is the rate at which work is done within the 
volume of rock (V) occupied by the fold, crij is the stress 
tensor, and qj is a velocity vector which represents the 
rate and direction at which a parcel of rock moves 
through the fault-bend fold. The sign convention that 
compressive stress is negative is followed here. The 
symbol (,i) denotes the partial derivative with respect to 
the i coordinate, either x or z, as shown in Fig. 1. No 
explicit assumptions about the rheology of the rocks in 
the thrust sheet are made during the formulation of 
equation (1). Instead rheology is accounted for implicitly 
since it ultimately governs the stresses which develop. 

Each term on the right side of equation (1) must be 
specified in order to calculate the work. The velocity 
vector of qy is dependent on the displacement paths 
through the fold. Mitra & Boyer (1986) follow Suppe 
(1983) and use straight-line segments to describe the 
trajectory of the thrust sheet through the fault-bend 
fold. In this discussion, smooth curves are used instead 
for the fold hinges, for two reasons: (1) even very tight 
folds observed in the field remain arcuate, unless a fault 
disrupts the continuity of bedding; and (2) straight-line 
segments result in a mathematical singularity in the work 
equation. This singularity arises because a parcel of rock 
moving smoothly through the fold instantaneously 
changes its direction and undergoes infinite vertical 
acceleration at the hinge, if straight-line segments are 
used for the displacements, although this approximation 
may be satisfactory in calculations of bed lengths and 
areas for balancing cross-sections. 
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Fig. 1. Fault-bend fold geometry and coordinate system definition, x 
and z are the horizontal and vertical coordinate axes, respectively, 
with origin at 0, h is the thickness of the thrust sheet and 0 is the ramp 
angle. Fault-bend folding occurs in the stippled region at the base of 

the ramp, bounded by lines x = 0 and x = z tan 0. 

Use of the work equation does not limit the kinds of 
deformation that can be considered, except that acceler- 
ations must remain finite. For the purpose of this discus- 
sion it is assumed that fault-bend folding preserves both 
area in cross-section and the thickness for beds which 
enter the fold parallel to the basal thrust fault. In the case 
of concentric fault-bend folds the components of the 
velocity vector qj are 

z 
qx (x  2 -k- z2)  1/2 it 

(2 )  
x 

qz = (x 2 + z2)1/2 it 

where it is a constant which represents the rate at which 
the thrust sheet advances. These equations apply within 
the region occupied by the fold. If the step-up angle is 0, 
then the fold lies between the lines x = 0 and x = z tan 
0 as shown in Fig. 1. 

Estimating o-ij is more problematic. Mitra & Boyer 
(1986) specified only the shear stress, and assumed that 
its value is constant: 

oxz = = (3 )  

Initially, I will make the same assumption here. Using 
the displacements given by (2) and the stresses given by 
(3) the work equation (1) becomes 

W fh Iztan° X2 -- Z 2 - -  T 
it z=O Jx=O (X 2 -'l'- Z2) 3/2 d x  d z  (4) 

where h is the thickness of the thrust sheet (Fig. 1). In 
this equation and those that follow it is to be understood 
that the work calculated is per kilometer of thrust sheet 
width, because the integration is taken over the area in 
cross-section. Performing the integrations yields 

W h r ( - 2 s i n 0 +  IOge 1 + sin 0) 
it - cos 0 ' (5) 

This result is substantially the same as that obtained by 
Mitra & Boyer (1986, Appendix) which is 

W 0 
- = -2h~- tan - .  (6) 
it 2 

For example, the ratio of equation (5) to (6) is 0.98 and 
0.83, for 0 = 10 ° and 30 °, respectively. 

The approximation that ~rij is constant is generally not 
satisfactory for thick thrust sheets, particularly those 
that carry their overburden with them, and thus extend 
to the surface where O-xz and Ozz vanish. McGarr (1980) 
has shown that, for a homogeneous subsurface, the 
components of stress are linear functions of depth. For 
the purpose of this discussion, linear functions are used 
to represent stress components at depth in the thrust 
sheet. These are viewed as first-order approximations 
only, because the stress field in the earth depends on 
many factors, including tectonic forces, overburden 
weight, possible stress refraction at the boundaries 
between different structural-lithic units, and stress due 
to bending these units. The stress within a thrust sheet is 
approximately given by 

o~x = A1 + B l z  
O'zz = A2 + B2z (7) 

( A I  - A 2 )  (B1 - B2) tan 2 y z  ~rxz - 2 tan 2y 2 

where A l, A2, Bl and B2 are constants, A 1 andA2 are the 
normal components of stress at z = 0 (Fig. 1), and B1 
and B2 are the stress gradients. The angle 3' is the 
inclination of the principal stress direction with respect 
to the x-axis. 

The work done in this stress field is obtained by 
evaluating the work equation (1) for the displacements 
and stresses given in equations (2) and (7), respectively. 
The result is 

- -  = cos 0 - 1 + tan 2._0 
u 2 

× (2 sin 0 -  loge 1 + sin 0)] 
COS 0 ( A I  - Az)h 

+ (sin0,0ge +Sin0) 
cos 0 (B1 - B2)h: 

(8) 

-21 (BI(1 - cos 0) + B~ 

x ( 2 -  2cos  0 -  sin 2 0) 
0- h2" 

The relative importance of work done within the 
fault-bend fold in the overall energy balance can be 
judged by comparing this result to the change in gravita- 
tional potential energy. This comparison may be 
illustrated by consideration of two examples (Fig. 2). 
Example I involves a long thrust sheet which continues 
to advance for an indefinite distance after travelling up 
the ramp. This kind of thrusting has occurred in the 
central Appalachian foreland of Virginia and West Vir- 
ginia (Jacobeen & Kanes 1974). Estimates of the total 
work done during the emplacement of these thrust 
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Fig. 2. Two stylized models of thrust sheets. Example I is a ramp-flat 
structure in which the thrust sheet climbs the ramp and continues to 
advance indefinitely. Fault-bend folding occurs at the base and top of 
the ramp. Example II contains a structural culmination at the top of the 
ramp. Rocks in the patterned region at the top of the ramp occupied 
the corresponding area along the ramp prior to thrusting. Originally 
horizontal bedding dips toward the foreland in this part of the 

structure. 

sheets must also take into account the energy required to 
form a fold having a foreland-dipping limb at the leading 
edge of the thrust sheet. Example II (Fig. 2) considers 
the formation of the foreland-dipping limb, and also 
approximates isolated structures which culminate at the 
top of the ramp, as in the Sequatchie anticline and the 
Allegheny structural front in the southern Appalachians 
(Milici 1968, Milici & Leamon 1975), or individual 
imbricate slices in duplexes (Boyer & Elliott 1982). 

For Example I the amount of rock (area in cross-sec- 
tion) moved from the lower level to the upper level, per 
unit time, is hR. Hence the rate at which work is done 
against gravity is 

Wg = pgh2u (9) 

where p is the density of the rock in the thrust sheet and 
g is gravity (980 gals). The rate at which work is done 
within the fold at the base of the ramp is estimated from 
equation (8), assuming values for the constants as fol- 
lows:Al = A 2 = 0 ; B  2 = - p g ; B  1 = 2B2;andy = 15 °. 
These values for A 1 and A2 are appropriate because of 
the free surface at the top of the thrust sheet, where 
or= = tr, z = 0. The vertical stress gradient is approxi- 
mately lithostatic, so B2 = - p g .  The relationship 
B~ =2B2 follows from stress measurements in 
boreholes in seismically active regions (Zoback & 
Hickman 1982), and depends on the compressive 
strength of the rocks at different depths within the 
stratigraphic column. The value for y is chosen to pro- 
duce a shear stress increase of about 7.5 MPa per km of 
depth. For a 5 km thick thrust sheet this yields an 
average shear stress equal to the 20 MPa value used by 
Mitra & Boyer (1986), based on data from the McCon- 
nell thrust (Elliott 1976). It is also consistent with esti- 
mates of shear stress in the Taiwan foreland (Davis etal. 
1983) of 65 MPa at 10 km depth, assuming p = 2400 
kgm/m 3. The work term for internal deformation 
obtained from equation (8) using these values is: 

W= [0,+in0 lo  l+s'n0)+sin2:>cos0 cos 
(10) 

This is the contribution from the fault-bend fold at the 
base of the ramp. It is doubled to approximately account 
for the effect of the fold at the top of the ramp. The 
importance of work done by fault-bend folding relative 
to the change in gravitational potential energy due to 
uplift is indicated by the ratio obtained from equation 
(9) and twice equation (10): 

w ( ) 
~ g -  0.58 s i n 0 -  log~l 7os + Sino0 + sin2cos00 (11) 

which is 0.03, 0.12 and 0.26 for 0 = 10 °, 20 ° and 30 °, 
respectively. 

The geometry depicted in Example II (Fig. 2) results 
from thrusting which is active for a specific time interval, 
equal to h(O + cot 0)/u. Prior to thrusting the thickness 
of the section is uniform, and the rock contained in the 
patterned region at the top of the ramp occupies the 
corresponding area along the ramp. During thrusting, 
shear strain occurs within the two concentric fault-bend 
folds at the base and top of the ramp. The work done 
against gravity in this case is 

W g - p g h 3 [ 5 ( O +  cot 0 ) +  4(sin 0 + cosec 0)] 
12 

(12) 

The work done by internal deformation in Example II 
includes contributions from each of the two fault-bend 
folds. The patterned region at the top of the ramp has 
traversed the upper fold. The portion of the thrust sheet 
along the ramp has traversed the lower fold. If it is 
assumed, as in Example I, that the same stresses apply in 
both folds, then the total work done within the folds is 
obtained by evaluating equation (10) for these two 
regions, using u = h(O + cot 0). The result is 

cos0 cos 
× (0 + cot 0). (13) 

The ratio W/Wg for Example II obtained from (12) and 
(13) is 

9[0"58( s i n 0 - 1 ° g e l  +sin0)+sin200]cos 0 cos 

W = X(O+ cot O) 
Wg 5 ( 0 + c o t 0 )  + 4 ( s i n 0 + c o s e c 0 )  (14) 

which is 0.03, 0.11 and 0.25 for 0 = 10 °, 20 ° and 30 °, 
respectively, and is nearly the same as in Example I. 

WORK DONE IN THE FAULT ZONE 

The work done along the basal thrust fault can be 
estimated from the work equation. An alternative form, 
obtained by applying Green's theorem (Green 1828, 
Love 1927, p. 85) to equation (1), is appropriate where 
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the fault zone is very thin relative to the thickness of the 
thrust sheet. This form, which expresses work in terms 
of stress and displacement along the footwall instead of 
their derivatives, is 

W = ( oijniq j dA (15) 
) A 

where A represents the area of the fault surface and ni is 
a unit vector perpendicular to it. The stress vector ~qns 
acting on the fault depends on the lithostatic stress 
(pgh),  the increment in stress due to tectonic compres- 
sion, and the coefficient of friction and fluid pressure in 
the fault zone. Laboratory measurements of the 
coefficient of friction (f) using dry rocks place its value in 
the range0.6 ~< f ~< 0.9 (Byerlee 1977). However, lower 
values may be appropriate for the large-scale deforma- 
tions associated with a major thrust fault. Turcotte & 
Schubert (1982 p. 356) estimate f = 0.36 for the Wind 
River, Wyoming, thrust fault. Sibson (1983) estimated 
that shear resistance to thrusting in the brittle upper 
crust is proportional to depth, and increases by about 21 
MPa/km, assuming f = 0.75 and hydrostatic fluid pres- 
sures in the fault zone. Estimates of shear stress by Davis 
et al. (1983) for the Taiwan foreland, and Hatcher & 
Williams (1986) for large, subhorizontal thrust sheets 
transported along brittle faults, indicate that the increase 
in shear resistance with depth is about 7.5 MPa/km, 
which is consistent with the low coefficient of friction 
reported by Turcotte & Schubert. Evaluating the integ- 
rand of equation (15) using qj as specified in equation (2) 
yields 

crqniq j = Ixpghit (16) 

where )x is a constant that depends on the average 
density of the thrust sheet and the coefficient of friction 
and fluid pressure in the fault zone. Values of/z are low 
(/z = 0.32) for low (7.5 MPa/km) shear resistance and 
intermediate densities (p = 2670 kgm/m 3). Conversely, 
# is large (tz = 0.8) for higher (21 MPa/km) estimates of 
the shear resistance. 

The work done within the basal thrust fault zone is 
estimated for Example II by evaluating the work equa- 
tion (15) for the integrand given in (16). The length of 
the thrust fault underlying this thrust sheet is 
(20 + 2 cot 0 + cosec O)h. Hence 

W = txpgh2(20 + 2 cot 0 + cosec 0)/~. (17) 

Integrating over the time interval that thrusting is active 

W = p, pgh3(O + cot 0)(20 + 2 cot 0 + cosec 0). 
(18) 

The work ratio of friction along the thrust fault to 
uplift for Example II is obtained from the ratio of 
equation (18) and (12): 

W _ 12/z(0 + cot 0)(20 + 2 cot 0 + cosec 0) 
Wg 5(0 + cot 0) + 4(sin 0 + cosec 0) 

(19) 

which is 7.3, 3.8 and 2.7 for 0 equal to 10 °, 20 ° and 30 °, 
respectively, and /z = 0.32. These values for the ratio 

(19) are increased by a factor of 2.5 if the larger estimate 
/~ = 0.8 is used. Lower values may be possible if thrust- 
ing is not frictional sliding, but rather is dominated by 
fluid-assisted pressure-solution creep, as described by 
Wojtal & Mitra (1986). 

The amount of work done overcoming friction along 
the thrust fault in Example I cannot be determined, 
because the length of the fault is not specified. However, 
it is clear that the work ratio of friction to gravity exceeds 
that of Example II, because the fault is longer and the 
uplift is the same. Hatcher & Williams (1986) suggest 
that the length of such a thrust sheet is limited by the 
compressive strength of the rocks it contains. Beyond 
some critical length, the rocks will not support the 
tectonic compressive stress required to move the thrust 
sheet, and the length will be reduced by additional 
faulting and imbrication. 

DISCUSSION 

The energy required for thrusting comes from forces 
related to compressive plate boundaries and topographic 
slope (Davis et al. 1983). The greatest portion of this 
energy is used to overcome frictional resistance within 
the fault zone. The amounts of energy used for uplift 
against gravity and internal deformation due to fault- 
bend folding depend on the ramp angle, 0, and are 
estimated to be 37% and 10%, respectively, of the 
energy consumed within the fault zone for 0 = 30 °, 
decreasing as 0 decreases. These results apply to struc- 
tures in which the thicknesses of individual thrust sheets 
are comparable to the depth of the basal thrust fault, 
because of the assumptions made here about the way 
stress varies with depth. The work equation (5) yields 
the same result as the strain energy equation (6) (Mitra 
& Boyer 1986) for small shear strains, corresponding to 
small values of 0. The examples considered here (Fig. 2) 
involve arbitrary ramp angles. 

The equations derived in this paper apply sensu stricto 
only to the bending of thrust sheets as they ride over 
non-planar fault surfaces, as described by Suppe (1983). 
Generalizations concerning duplex formation must also 
take into account the energy consequences of other 
kinds of folds and deformation within the thrust sheets. 
It is unlikely that the majority of folds observed in any 
particular duplex result solely from fault-bend folding. 
Duplex formation involves deformation within structur- 
ally higher and earlier formed thrust sheets (Boyer & 
Elliott 1982). Folding of these imbricate masses would 
probably entail more work than that required for a single 
ramp. In a duplex, beds within one imbricate slice are 
not necessarily parallel to those within adjacent slices, 
making difficult the transfer of interbed slip from one 
imbricate to another. 

Work calculations show that imbricate structures 
including duplexes are stiffened by shear deformation 
within fault-bend folds. Work is the product of force and 
displacement; thus for given displacement of a thrust 
sheet the additional energy utilized for internal deforma- 



Energy balance for thrust sheets and fault-bend folds 379 

tion requires greater compressive forces, and con- 
sequently greater levels of stress. This effect has previ- 
ously been examined by treating the thrust sheet as a 
beam which is bent when it encounters a ramp 
(Wiltschko 1979). The resistance to thrusting attributa- 
ble to fault-bend folding is less than 25% of that which 
arises because of uplift, and less than 10% of the total for 
0 = 30 °. This percentage is dependent upon the stress 
field in which thrusting occurs. 

The conclusion that fault-bend folding requires rela- 
tively little work is consistent with observations of the 
deformation in large thrust sheets. Fault zones com- 
monly show evidence of high energy processes, including 
the formation of cataclasites, accompanied by intense 
fracturing and penetrative deformation (House & Gray 
1982, Diegal & Wojtal 1985). However, these effects are 
generally restricted to a narrow band within a few meters 
of the fault, and are only rarely observed throughout the 
larger volume of the thrust sheet where the energy used 
for fault-bend folding is dissipated. 

CONCLUSIONS 

(1) The energy balance for the transport and emplace- 
ment of large thrust sheets can be expressed in terms of 
tectonic compression, frictional forces along the basal 
thrust fault and change in gravitational potential energy 
due to uplift. Most of the energy is used to overcome 
frictional resistance, including sliding friction and defor- 
mation, within the fault zone. The energy for internal 
deformation of these thrust sheets is a relatively small 
part of the total. For particular thrust sheets useful 
estimates of the relative contributions of friction, uplift 
and internal deformation to the energy balance canbe 
made from measurements of the ramp angles. Mitra & 
Boyer (1986) have already shown that the energy 
required for nucleation of the thrust surface and crack 
propagation is relatively small. 

(2) The work equation is preferable to the strain 
energy equation for energy balance calculations of 
thrusting and duplex formation. Use of the work equa- 
tion is limited to problems where the shapes of the ramp 
and fault-bend folds are represented by smooth curves, 
which preserve the continuity of velocity and accelera- 
tion of a parcel of rock displaced by the thrusting. It does 
not apply, in general, where only straight lines are used, 
because these may imply a discontinuity in velocity, and 
infinite acceleration as the rocks moving through the 
fold change direction. 

(3) Concentric folds are a viable representation of 
fault-bend folds in foreland fold-and-thrust belts. The 

question of the relative frequency of occurrence of 
concentric folds versus other shapes including narrow 
kink-bands remains unresolved. 
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